

Centre for Zero Energy Building Studies Centre d'études sur le bâtimen consommation nulle d'énergie

Improving Ventilation Performance for Energy-Efficient Buildings using Tracer Gas Measurements

Presenter: **Ibrahim Reda**, PhD(c)

Department of Civil and Building Engineering Université de Sherbrooke Canada

Research Supervisor: Prof. Dahai Qi, PhD

Department of Civil and Building Engineering Université de Sherbrooke Canada

Research Co-supervisor: Prof. Liangzhu (Leon) Wang, PhD

Department of Building, Civil and Environmental Engineering Concordia University Canada

Université de Sherbrooke

Research Problem!

Decay method assumptions:

- Stable and inert tracer.
- No adsorption processes.
- Single zone.
- Constant ventilation rate.
- Well-mixed space.

To what extent Well-mixed space is real?

$$\lambda = 2 \frac{\ln C(t2) - \ln C(t1)}{t2 - t1}$$

Regression method of estimating air change rates using decay method [ASTM E741].

Limitations of existing Solutions!

Existing mixing models and effectiveness factors (e.g., K or E_z) are limited in addressing this gap since their reported data are **subjective, roughly estimated,** and **inconsistent across different standards** (ASHRAE and AIHA).

ANSI/ASHRAE Standard 62.1-2019 (Supersedes ANSI/ASHRAE Standard 62.1-2016) Includes ANSI/ASHRAE addenda listed in Appendix O

Ventilation for Acceptable Indoor Air Quality

Table 6-4 Zone Air Distribution Effectiveness

Air Distribution Configuration	Ez	
Well-Mixed Air Distribution Systems		
Ceiling supply of cool air	1.0	
Ceiling supply of warm air and floor return	1.0	
Ceiling supply of warm air 15°F (8°C) or more above space temperature and ceiling return	0.8	
Ceiling supply of warm air less than 15°F (8°C) above average space temperature where the supply air-jet velocity is less than 150 fpm (0.8 m/s) within 4.5 ft (1.4 m) of the floor and ceiling return	0.8	
Ceiling supply of warm air less than 15°F (8°C) above average space temperature where the supply air-jet velocity is equal to or greater than 150 fpm (0.8 m/s) within 4.5 ft (1.4 m) of the floor and ceiling return	1.0	
Floor supply of warm air and floor return	1.0	
Floor supply of warm air and ceiling return	0.7	
Makeup supply outlet located more than half the length of the space from the exhaust, return, or both	0.8	
Makeup supply outlet located less than half the length of the space from the exhaust, return, or both	0.5	

Stratified Air Distribution Systems (Section 6.2.1.2.1)

Floor supply of cool air where the vertical throw is greater than or equal to 60 fpm (0.25 m/s) at a height of 4.5 ft (1.4 m) above the floor and ceiling return at a height less than or equal to 18 ft (5.5 m) above the floor	1.05
Floor supply of cool air where the vertical throw is less than or equal to 60 fpm (0.25 m/s) at a height of 4.5 ft (1.4 m) above the floor and ceiling return at a height less than or equal to 18 ft (5.5 m) above the floor	1.2
Floor supply of cool air where the vertical throw is less than or equal to 60 fpm (0.25 m/s) at a height of 4.5 ft (1.4 m) above the floor and ceiling return at a height greater than 18 ft (5.5 m) above the floor	1.5

Solution

Scan QR code

Ibrahim Reda ° 🖾 , Eslam Ali ^b 🖾 , Dahai Qi ° 오 🖾 , Liangzhu (Leon) Wang ^b 🖾 , Theodore Stathopoulos ^b ত , Andreas Athienitis ^b ठ

spaces

Application to classroom

Université de Sherbrooke UDS

Zone description and test setup at Longueuil campus, University of Sherbrooke

Validation of the Modified Decay Method

Estimated air change rate for a non-uniform mixed space with stagnant regions [/h] λ_{sr}

E,

 U_i Uniformity index

 C_{o}

- The indoor concentration of tracer gas $[g/m^3]$ С
 - The initial concentration of tracer gas $[g/m^3]$

- Zone distribution effectiveness
- $C_{h\sigma}$ Background concentration [g/m³]

Université de Sherbrooke

UDS

 $\lambda_{zsr} = \frac{E_z}{(t-t_0)} \ln \frac{(C - C_{bg})}{(C_0 - C_{bg})}, \qquad \lambda_{wm} > \lambda_m$

Réseau Energie et Bâtiments

Conclusions

MDM

For the original decay method:

70% of sampling locations have underestimated λ (ϵ = 59%) 5% of sampling locations have overestimated λ (ϵ = 35%) 25% of sampling locations have acceptable λ (ϵ = 11%)

For the modified decay method:

 ϵ decreased from 25.6% to 3.4% at the outlet ϵ decreased from 25.0% to 2.5% at the average concentrations

For the proposed uniformity index (U_i) :

 U_i is more effective than ASHRAE Ez in enhancing the accuracy of λ measurements, with an improvement ranging from 7.8% to 17.5%.

Future needs

UDD Université d Sherbrooke

Generalizing the developed method (MDM)

CFD simulations and field tests for various geometrical and ventilation configurations will be performed to develop a referenced data (table) of uniformity index (U_i), which extend the applicability of the novel MDM.

Thanks!

Presenting author: Ibrahim Reda, PhD(c) (Université de Sherbrooke)

ibrahim.reda@usherbrooke.ca

Research Supervisors

Prof. Dahai Qi, PhD (Université de Sherbrooke)

Prof. Leon Wang, PhD (Concordia University)

Acknowledgment

Concordia University

- Mr. Luc Demers
- Mrs. Hong Guan

Fonds de recherche Nature et technologies Québec 🐼 🐼

Université de Sherbrooke

- Mr. Michaël Ménard
- Mr. Frédéric Turcotte
- Mr. Pierre Lavoie
- Mr. Robert Aumais
- Mr. Guy Royer
- Mr. Sylvain Corbeil